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1 Executive Summary 
In this document, we report the progress and goals achieved so far with respect to the produced 
deliverable D2.1 submitted by ESR2 in Dec 2018. As a follow-up of D2.1, we provide a basic in-
troduction which specially outlines the limitations of applying Machine Learning (ML) techniques 
to compute Quality of Transmission (QoT) estimation (further details were reported in D2.1). To 
accomplish reliable and efficient optical network planning and operation, accurate estimation 
of QoT before establishing connections is necessary. To deal with such a critical requirement, 
we develop a tool and a system aiming at estimating / predicting the QoT of unestablished op-
tical connections. This macroscopic objective is attained through leveraging the well-known ML 
benefits on providing estimations and predictions.  
In this document, the first two sections provide a brief introduction to the devised and deployed 
QoT tool used to perform the QoT computation of any connection to be established. This en-
compasses the details and aspects related to the adopted mathematical formulation and the 
required migration / improvement from single link scope towards a network model. The devel-
oped QoT tool poses the pillar to explore ML solutions aiming at improving its estimation accu-
racy.  
The “design margin” is traditionally applied/added to regular QoT tools, to absorb possible un-
certainties on the physical layer parameters of devices or effects, and also to cover modelling 
simplification assumptions. In other words, the design margin is an additional contribution to 
the QoT estimation to embrace network and systems effects for which the QoT model is unable 
to cover. One of this effect is the span EDFA gain ripples. The EDFA gain ripple affects the overall 
noise but it is not typically modelled, and thus it affects the QoT estimation accuracy and is cov-
ered by a part of the design margin. As mentioned, a ML solution is devised to estimate the EDFA 
gain ripple penalty by monitoring established connections. We then verify the resulting accuracy 
of proposed ML tool by testing it on unestablished connections within a specific network topol-
ogy. The attained results do lower margins of ~1dB. 
The second problem we investigate is the uncertainties in ROADM penalties in the commonly 
used “Switch & Select” optical node architecture. The primary assumption is that removing such 
uncertainties leads to further reduce margins from the QoT tool. To do that we again exploit the 
advantages of ML for estimating the uncertainties caused by ROADM penalties. By doing so, we 
achieve a significant margin reduction of ~0.69dB. 
Last but not least, this report concludes with the achievements done so far along with the activ-
ities planned for the upcoming short and medium term by ESR2.  

We also provide at the end of this report a separate section to discuss the collected suggestions 
and comments from the advisory committee and the actions taken to address them. 
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2 QoT Estimator & Margin in Optical Networks  
The emergence of Elastic Optical Networks (EONs) has introduced flexibility in the optical 
transport supporting heterogeneous data rates, optical spectrum channels, modulation formats, 
etc. This leads to attain higher spectral efficiency and capacity, while keeping the network costs 
as low as possible [1]. Prior to the deployment of a new connection, it is very important to esti-
mate the Quality of Transmission, QoT, for the new connection, as well as for the already existing 
ones. The definition of QoT generally refers to several physical layer parameters, such as re-
ceived Optical Signal-to-Noise Ratio (OSNR), Bit Error Ratio (BER), Quality or Q-factor, etc., which 
provides the information about the quality level of the optical signal at the receiver [2][3]. These 
parameters give a quantitative measure to check if a predetermined level of QoT would be guar-
anteed or not. Also, these parameters itself affected by several design parameters, such as, 
modulation format, symbol rate, launch power, physical path in the network, etc. For reliable 
and efficient optical network planning and operation, accurate estimation of Quality of Trans-
mission, QoT before establishing the connections is necessary. QoT prediction of unestablished 
connections relies on an estimation tool, also referred to as Qtool, capable of predicting 
whether connection request will meet the required quality or not. The Qtool is a physical layer 
model (PLM), generally an analytical or semi-analytical model of the physical layer based on 
certain assumptions that estimates with certain accuracy the QoT (e.g. OSNR, SNR, BER etc.) of 
new or reconfigured connections.  
Traditionally, QoT estimation is performed with some analytical Physical Layer Model (PLM), 
while, recently Machine Learning (ML)-based estimation has gained a lot of attention 
[4][11][12]. The main sources of noise accounted in these QoT estimators are the Amplified 
Spontaneous Emission (ASE) noise generated at both span and node amplifiers and the Non-
Linear Interference (NLI) noise, which considers fiber non linearities, self and cross channel in-
terferences (SCI, XCI). Apart from these major sources of noises in a network, physical layer con-
ditions continuously evolve with time (with load, traffic, aging etc.). These evolution or changes 
in physical layer condition and their parameters, leads to deviation of quality parameter values 
estimated by the QoT tool. To accommodate these changes generally physical layer margins are 
used to cover the evolution of the physical and traffic conditions and uncertainties related to 
those [4]. Removing such uncertainties would allow to reduce the margin from the QoT tool 
without compromising the QoT estimation accuracy. By doing this, appealing advantages such 
as higher efficiency and/or lower cost can be achieved during the network planning and upgrad-
ing phases. 

2.1 Problem Statement 

Erbium Doped Fiber Amplifiers (EDFAs) are key devices in Wavelength Division Multiplexed, 
WDM and EON transport networks to ensure the required connection QoT level at the receivers. 
Nevertheless, EDFAs are the dominant noise source, specifically Amplified Spontaneous Noise, 
ASE in those networks. Typically, span EDFAs are operated in Automatic Gain Controlled (AGC) 
mode having average gain equal to the insertion loss of the fiber span. All these span EDFAs in 
the network are generally operated with near to zero tilt (Fig. 2.1(a)) by applying first order/ 
linear correction. This linear correction results in almost zero tilt of the span EDFAs result in 
negligible gain slope in the C-band as shown in Fig. 2.1(b)[5]. However, although the gain tilt 
profile is maintained at zero still there are gain fluctuations/ripples within the gain bandwidth 
of EDFAs (Fig. 2.1(b)) [6]. These gain ripple effects may be due to: i) imperfections in the gain 
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flattening filters at the amplifier output; or ii) wavelength dependent absorption/ emission co-
efficients of 𝑬𝑬𝑬𝑬𝟑𝟑+ ions [7]. These gain ripples add uncertainty in estimation accuracy of QoT tool 
and to cover this, design margin (~2dB) is added on top of the Qtool [4].  
 

 
Fig. 2.1: (a) Experimentally collected EDFA gain ripple and gain tilt at EDFA output, (b) Gain tilt 

control with zero order / linear correction 

Optical networking has evolved through many generations, from unamplified, repeated single-
wavelength-per-fiber links to wavelength agile reconfigurable optical add/drop multiplex 
(ROADM)-enabled mesh networks. Each generation has provided a range of new features and 
capabilities [8]. The current generation of ROADM-based optical networks leverages the wave-
length selectable switch (WSS) and provides software-controlled wavelength channel cross-con-
necting capabilities through each optically meshed node. The WSSs that are integrated in 
ROADMs induce penalties on the optical signal due to tight optical filtering, which increases as 
several ROADMs are cascaded in a meshed network. In the literature techniques are presented 
to mitigate these penalties with the help of optical wave shapers [9]. But in real world, these 
filtering penalties coming mainly from the filtering narrowing effect due to multiple ROADM 
nodes within connection’s path (or simply filter cascading) are always present and are covered 
in the design margins as discussed above. Although these node penalties tend to have exponen-
tial nature with respect to the number of ROADMs, still there are uncertainties especially in the 
presence of heterogeneous nodes with different characteristics (e.g., in multi-vendor scenarios, 
3-dB bandwidth or central frequency mismatch etc. [9][10]). 
Concluding, the EDFA gain ripple and filter cascading uncertainties affect the QoT estimation 
accuracy which is covered by the design margin. In light of the above the following two topics 
are investigated: 

i) the contribution of the wavelength dependent EDFA gain ripple on the QoT  
ii) the contribution of filter cascading uncertainties within ROADM nodes on the QoT  

A ML regression model based on a link formulation approach is proposed separately to tackle 
both the above-mentioned problems to estimate the end to end penalties and hence QoT for a 
connection. 
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3 Design and Implementation of Developed QoT Tool 
In this section, we highlight the basic used mathematical expressions and their extensions to 
deploy and implement the proposed QoT tool. Firstly, a basic introduction is provided addressing 
the well-known Gaussian Noise (GN) model [14]. Afterwards, it is discussed how extend the GN 
model to capture the span EDFA gain ripple effect. The background to migrate these mathemat-
ical expressions from static link to network model (with 4-nodes) is also thoroughly discussed. 
All the equations used and discussed in this section are implemented for DT-12 node network 
topology in MATLAB.   

3.1 Detailed Gaussian Noise (GN) Model per Link  
Most of the QoT tools relies on some model that gives information about the physical layer con-
dition of a network and, in general is known as Physical layer Model (PLM). As presented in 
section 2, the main sources of noise accounted in QoT estimators are the ASE noise generated 
at both span and node amplifiers and the NLI noise, which considers fiber non linearities, self 
and cross-channel interference, SCI and XCI. The knowledge of these noises along with additional 
design margin in a PLM is a basic requirement for most of the existing QoT tools. 

The calculation related to the ASE noise is quite straightforward and majorly depends upon the 
gain of the EDFA [1] [7]. The expression used for the Power Spectral Density (PSD) calculation of 
ASE noise, 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴  is given below by Eq. 1. 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑁𝑁𝑁𝑁 ∗ ℎ ∗ 𝑣𝑣 ∗ �𝑔𝑔𝑛𝑛𝑠𝑠 − 1�               (1) 

Where, NF is the Noise Figure of the amplifier and is equal to 2*𝑛𝑛𝑠𝑠𝑠𝑠,  𝑛𝑛𝑠𝑠𝑠𝑠 is the spontaneous 
emission factor, ℎ is the Planks constant, 𝑣𝑣 is the emission frequency and 𝑔𝑔𝑛𝑛𝑠𝑠  is the average gain 
of the amplifier placed in the 𝑛𝑛𝑠𝑠-th span.  

The NLI noise calculation is comparatively a bit more complex and needs proper knowledge of 
the number of neighbouring channels, their frequency spacing, baud rates and many other phys-
ical layer parameters. For the NLI noise calculation, many models in the literature are available 
ranging from time consuming direct split step calculation, less accurate semi-analytical models 
to less time consuming with good accuracy value models based on the inverse noise addition 
assumption. Out of all these, the model based on inverse noise addition is the widely accepted 
model due to its trade-off between computation time and accuracy. One such perturbative 
model to capture the non-linear effects generated during fiber propagation in uncompensated 
optical transmission systems is known as Gaussian Noise, GN-model [14][15]. The GN-model has 
proved itself a relatively simple and, at the same time, sufficiently reliable tool for performance 
prediction over a wide range of system scenarios, effective for both system analysis and design.  

In our case, to deal with the NLI calculation along a link with multiple spans in closed form, the 
incoherent accumulation of noise is the basic assumption used in the GN model. With this as-
sumption, the NLI noise spectrum at the end of the link can be simply calculated as the sum of 
the NLI noise spectra produced in each single span considering the loss and gain in each span. 
For the simulation results presented in this report, we adopted (and extended as described in 
the following) the GN model for non-identical channel (each channel has different power, baud 
rate and uneven spacing) and non-identical spans (each span has different length, possible) sys-
tem. Fig. 3.1 shows an example of the PSD of non-identical channels in a span. This flavour of 
the GN model is the most practical and well-suited for our application. The different colours in 
the Fig. 3.1 are only meant to highlight the channel diversity. 
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Fig. 3.1: Example of possible WDM overall transmission spectrum 𝑻𝑻𝑻𝑻(𝒇𝒇) having different chan-
nels power spectral density, 𝑮𝑮𝒄𝒄𝒄𝒄,𝒏𝒏 with transmitting lasers at frequencies, 𝒇𝒇𝒄𝒄𝒄𝒄,𝒏𝒏 and 3dB band-

width, 𝑩𝑩𝒄𝒄𝒄𝒄,𝒏𝒏 

 

The index n runs from 1 to the number of channels in the system, 𝑁𝑁𝑐𝑐ℎ. The center frequency and 
the PSD values for individual channel are represented by the quantities 𝑓𝑓𝑐𝑐ℎ,𝑛𝑛 and 𝐺𝐺𝑐𝑐ℎ,𝑛𝑛. So, the 
overall transmitted PSD, 𝐺𝐺𝑇𝑇𝑇𝑇(𝑓𝑓) can be written as; 

𝐺𝐺𝑇𝑇𝑇𝑇(𝑓𝑓) =  ∑ 𝐺𝐺𝑐𝑐ℎ,𝑛𝑛
𝑁𝑁𝑐𝑐ℎ
𝑛𝑛=1 (𝑓𝑓)                   (2) 

In GN model, the total NLI noise contribution is defined and calculated as contribution from 
three categories: self-channel interference (SCI), cross-channel interference (XCI) and multi-
channel interference (MCI). Specifically:  

i. SCI is the NLI perturbing a given channel, produced by that channel onto itself 
ii. XCI is the NLI perturbing a given channel, produced by the non-linear interaction of that 

channel with one other channel 
iii. MCI is the NLI perturbing a given channel, produced by the non-linear interaction of that 

channel with two other channels or by three channels other than the affected one. 

Let us consider a static link with no. of channels, 𝑁𝑁𝑐𝑐ℎ at fixed frequency spacing of Δf GHz and 
flat average gain of 𝑔𝑔𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎, which is equal to the span loss, Γ (dB) as shown in Fig. 3.2. In this 
static link schematic, the gain of EDFA is assumed to be ripple free or perfectly flat. 

 
Fig. 3.2: Static link model for Flat span EDFA profile 

Based on the WDM system depicted in Fig. 3.2, the detailed closed form analytical expression 
for the PSD calculation of NLI noise, 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁 on any “i-th” channel due to “n-th” neighbouring chan-
nels (including self-channel interference) is given by: 

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁�𝑓𝑓𝑐𝑐ℎ,𝑖𝑖� =  
16
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∑ 𝐺𝐺𝑐𝑐ℎ,𝑛𝑛𝐺𝐺𝑐𝑐ℎ,𝑛𝑛𝐺𝐺𝑐𝑐ℎ,𝑖𝑖
𝑁𝑁𝑐𝑐ℎ
𝑛𝑛=1 (2 − 𝛿𝛿𝑛𝑛𝑖𝑖) 𝛹𝛹𝑛𝑛,𝑖𝑖,𝑛𝑛𝑠𝑠 ∗                                                        (3)      

  ∏ 𝑔𝑔3𝑛𝑛′𝑠𝑠  𝑒𝑒−6𝛼𝛼𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠
𝑛𝑛𝑠𝑠−1
𝑛𝑛′𝑠𝑠=1

    ∏ 𝑔𝑔𝑛𝑛′𝑠𝑠  𝑒𝑒−2𝛼𝛼𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠
𝑁𝑁𝑠𝑠
𝑛𝑛′𝑠𝑠=𝑛𝑛𝑠𝑠

  

where “Ψ” is the phased array factor and under the assumption of incoherent accumulation, it 
is given by: 

𝛹𝛹𝑛𝑛,𝑖𝑖,𝑛𝑛𝑠𝑠  ≈  
asinh �  𝛱𝛱2�2𝛼𝛼𝑛𝑛𝑠𝑠�

−1 ∣∣ 𝛽𝛽2,𝑛𝑛𝑠𝑠 ∣∣ � 𝑓𝑓𝑐𝑐ℎ,𝑛𝑛 −  𝑓𝑓𝑐𝑐ℎ,𝑖𝑖 + 𝐵𝐵𝑐𝑐ℎ,𝑛𝑛 2⁄ � 𝐵𝐵𝑐𝑐ℎ,𝑖𝑖 �

4𝛱𝛱�2𝛼𝛼𝑛𝑛𝑠𝑠�
−1 � 𝛽𝛽2,𝑛𝑛𝑠𝑠�

−  

−  
asinh�  𝛱𝛱2�2𝛼𝛼𝑛𝑛𝑠𝑠�

−1 
∣∣
∣∣𝛽𝛽2,𝑛𝑛𝑠𝑠∣∣

∣∣� 𝑓𝑓𝑐𝑐ℎ,𝑛𝑛 −  𝑓𝑓𝑐𝑐ℎ,𝑖𝑖 −  𝐵𝐵𝑐𝑐ℎ,𝑛𝑛 2⁄ � 𝐵𝐵𝑐𝑐ℎ,𝑖𝑖 �

4𝛱𝛱�2𝛼𝛼𝑛𝑛𝑠𝑠�
−1 � 𝛽𝛽2,𝑛𝑛𝑠𝑠�

 ,               𝑛𝑛 ≠ 𝑖𝑖           

   

𝛹𝛹𝑖𝑖,𝑖𝑖,𝑛𝑛𝑠𝑠  ≈  
asinh�

 𝛱𝛱2

2
�2𝛼𝛼𝑛𝑛𝑠𝑠�

−1 
∣∣
∣∣𝛽𝛽2,𝑛𝑛𝑠𝑠∣∣

∣∣𝐵𝐵𝑐𝑐ℎ,𝑖𝑖
2 �

2𝛱𝛱�2𝛼𝛼𝑛𝑛𝑠𝑠�
−1 � 𝛽𝛽2,𝑛𝑛𝑠𝑠�

                                (4) 

where a number of quantities appear, which refer to the 𝑛𝑛𝑠𝑠-th span: , 𝐿𝐿𝑠𝑠,𝑛𝑛𝑠𝑠  its length; 𝛼𝛼𝑛𝑛𝑠𝑠  its loss 
parameter; 𝛽𝛽2,𝑛𝑛𝑠𝑠 its dispersion parameter; 𝛾𝛾𝑛𝑛𝑠𝑠 its non-linearity coefficient; 𝑔𝑔𝑛𝑛𝑠𝑠  the power gain 
of the EDFA placed at the end of the 𝑛𝑛𝑠𝑠-th span. “δ” is the factor that represents the SCI and XCI 
terms and is given by; 

𝛿𝛿𝑛𝑛𝑖𝑖 = 1  if n= i, i.e. SCI and 𝛿𝛿𝑛𝑛𝑖𝑖 = 0 otherwise (XCI, MCI are neglected to get closed form expres-
sion) 

Note that, if one assumes that span loss is exactly compensated for at the end of each span, 
then  𝑔𝑔𝑛𝑛𝑠𝑠 𝑒𝑒−2 𝛼𝛼𝑛𝑛𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛𝑠𝑠  = 1,∀ 𝑛𝑛𝑠𝑠   and therefore the gain-loss related products appearing in 
above Eq. simplify: 

∏ 𝑔𝑔3𝑛𝑛′𝑠𝑠  𝑒𝑒
−6𝛼𝛼𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠

𝑛𝑛𝑠𝑠−1
𝑛𝑛′𝑠𝑠=1

=   1           (5) 

∏ 𝑔𝑔𝑛𝑛′𝑠𝑠  𝑒𝑒−2𝛼𝛼𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠
𝑁𝑁𝑠𝑠
𝑛𝑛′𝑠𝑠=𝑛𝑛𝑠𝑠

= 1            (6) 

If we use the Gaussian Noise-GN model, as the PLM for NLI noise calculations in the QoT tool, 
then the typical assumption is a flat EDFA gain (no information of ripple generated noise) requir-
ing a high design margins to compensate the uncertainties in noise calculation as given by fol-
lowing equations 

𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂𝐹𝐹𝐹𝐹𝑎𝑎𝐹𝐹(𝜆𝜆) = 𝐺𝐺𝑂𝑂 (λ)
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴+ 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁(λ) + 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1 =  𝐺𝐺𝑂𝑂 (λ)

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑝𝑝  
+ 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1         (7)     

where 𝐺𝐺𝑂𝑂 (λ) is the signal PSD at the end of link and 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑒𝑒𝐹𝐹𝑎𝑎𝐹𝐹_𝑝𝑝 is the total noise PSD account-
ing for both ASE and NLI. The reason for using “flat” in the notation is because the span amplifi-
ers are assumed to be perfectly flat. “𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1” are the additional margins added in the 
QoT tool to compensate for gain fluctuation of amplifier, polarization dependent losses etc.  

3.2 Extended GN Model with EDFA Ripple Profiles per Link 
In practical scenarios and real network deployments, the EDFA gain is not constant throughout 
its bandwidth range but there are fluctuations. Such a fluctuation in EDFA gain is generally re-
ferred to as “gain ripple”. This gain ripple results in a deviation from the overall accumulated 
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noise in Eq. 7 and hence in the OSNR. Generally, a part of margins, “𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝐦𝐦𝐦𝐦𝐦𝐦𝐝𝐝𝐝𝐝𝐝𝐝𝟏𝟏” are in-
cluded in the QoT tool to compensate these uncertainties in the PLM. Typically, an additional 
design margin is adopted and applied to the QoT tool to accommodate estimation errors and 
other uncertainty parameters [16][18]. Reduced margins leads to attain appealing advantages 
such as higher efficiency and/or lower cost during the network planning and upgrading phases. 
To this end, we extend the existing GN model by providing EDFA ripple profile to each span EDFA 
and capturing its effect in overall noise, more specifically through the NLI noise calculated in this 
extended GN model. 

In Eq. 3, 𝒈𝒈𝒏𝒏𝒔𝒔  is the power gain of the EDFA placed at the end of the 𝒏𝒏𝒔𝒔-th span. We experimen-
tally generated EDFA gain ripple profiles. We denote these gain profiles as 𝒈𝒈𝒊𝒊(𝛌𝛌) having an av-
erage gain value of 𝒈𝒈𝒊𝒊,𝒂𝒂𝒂𝒂𝒈𝒈 =  𝒈𝒈𝒏𝒏𝒔𝒔  (= span loss, Γ (dB)) and wavelength dependent ripple, 𝒈𝒈𝒊𝒊,𝑹𝑹(𝛌𝛌) 
given by Eq. 8. 

𝑔𝑔𝑖𝑖(λ) = 𝑔𝑔𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑔𝑔𝑖𝑖,𝑅𝑅(λ)                                 (8) 

where i represent profile index 

Let us consider the same static link with number of channels, 𝑁𝑁𝑐𝑐ℎ at fixed frequency spacing of 
Δf GHz and flat average gain of 𝑔𝑔𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎, which is equal to the span loss, Γ (dB) as shown in Fig. 3.3. 
In this static link schematic, this time, the gain of each span EDFA is assumed to have different 
gain ripple profiles to capture penalties due to it and reduce design margins. 

 
Fig. 3.3: Static link model for span EDFA having Ripple profile 

Based on the WDM system depicted in Fig. 3.3, the detailed closed form analytical expression 
for the power spectral density (PSD) calculation of NLI noise, 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁_𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒, having different gain 
ripple profiles at each span EDFAs, is given by: 

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁_𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒�𝑓𝑓𝑐𝑐ℎ,𝑖𝑖� =  
16
27

� 𝛾𝛾2𝑛𝑛𝑠𝑠

𝑁𝑁𝑠𝑠

𝑛𝑛𝑠𝑠=1

𝐿𝐿2𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛𝑠𝑠 

∑ 𝐺𝐺𝑐𝑐ℎ,𝑛𝑛𝐺𝐺𝑐𝑐ℎ,𝑛𝑛𝐺𝐺𝑐𝑐ℎ,𝑖𝑖
𝑁𝑁𝑐𝑐ℎ
𝑛𝑛=1 (2 − 𝛿𝛿𝑛𝑛𝑖𝑖) 𝛹𝛹𝑛𝑛,𝑖𝑖,𝑛𝑛𝑠𝑠                                                         (9)      

 � (𝒈𝒈𝒏𝒏𝒔𝒔 +  𝑔𝑔𝑖𝑖,𝑅𝑅(λ))3
𝑖𝑖,𝑛𝑛′𝑠𝑠

 𝑒𝑒−6𝛼𝛼𝑁𝑁,𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠

𝑛𝑛𝑠𝑠−1

𝑖𝑖,𝑛𝑛′𝑠𝑠=1

    � (𝒈𝒈𝒏𝒏𝒔𝒔 +  𝑔𝑔𝑖𝑖,𝑅𝑅(λ))𝑖𝑖,𝑛𝑛′𝑠𝑠  𝑒𝑒
−2𝛼𝛼𝑁𝑁,𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠

𝑁𝑁𝑠𝑠

𝑖𝑖,𝑛𝑛′𝑠𝑠=𝑖𝑖,𝑛𝑛𝑠𝑠

 

where 𝑖𝑖,𝑛𝑛′𝑠𝑠, represent i-th gain ripple profile assigned to span 𝑛𝑛′𝑠𝑠 EDFA, and 𝛼𝛼𝑖𝑖,𝑛𝑛′𝑠𝑠  is the loss 
parameter for span 𝑛𝑛′𝑠𝑠 having gain ripple profile i. 

Ga
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(d
B)

Wavelength (nm)

WDM Tx.
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Tx.40
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𝑹𝑹𝑺 GBaud
Tilt≈0 𝒈𝒈𝒊𝒊,𝒂𝒂𝒂𝒂𝒈𝒈
𝑮𝑮𝒊𝒊,𝑹𝑹(𝝀)
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Now, since each EDFA has gain ripples, which are wavelength dependent, so Eq. (5) and Eq. (6) 
now have non-unity residual gain due to the ripple which is given as  

∏ ((𝒈𝒈𝒏𝒏𝒔𝒔)3 + �3 ∗ �𝒈𝒈𝒏𝒏𝒔𝒔�
2 ∗ 𝑔𝑔𝑖𝑖,𝑅𝑅(λ)� + �3 ∗ �𝑔𝑔𝑖𝑖,𝑅𝑅(λ)�

2
∗ 𝒈𝒈𝒏𝒏𝒔𝒔� +𝑛𝑛𝑠𝑠−1

𝑛𝑛′𝑠𝑠=1

�𝑔𝑔𝑖𝑖,𝑅𝑅(λ)�
3

𝑖𝑖,𝑛𝑛′𝑠𝑠
) 𝑒𝑒−6𝛼𝛼𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠 = ≠   1                                                                    (10) 

∏ ((𝒈𝒈𝒏𝒏𝒔𝒔)3 + �3 ∗ �𝒈𝒈𝒏𝒏𝒔𝒔�
2 ∗ 𝑔𝑔𝑖𝑖,𝑅𝑅(λ)� + �3 ∗ �𝑔𝑔𝑖𝑖,𝑅𝑅(λ)�

2
∗ 𝒈𝒈𝒏𝒏𝒔𝒔� +𝑛𝑛𝑠𝑠−1

𝑛𝑛′𝑠𝑠=1

�𝑔𝑔𝑖𝑖,𝑅𝑅(λ)�
3

𝑖𝑖,𝑛𝑛′𝑠𝑠
) 𝑒𝑒−6𝛼𝛼𝑛𝑛′𝑠𝑠𝑁𝑁𝑠𝑠,𝑛𝑛′𝑠𝑠 = ≠   1                                                                    (11) 

If we use the above extended version of GN model with Eq. (10) and Eq.(11) accounting for 
wavelength dependent residual gain due to ripple, as the PLM for the QoT tool, which can cap-
ture ripple effect in overall noise, then Eq. 7 will change to Eq. 12 having 
𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2;  𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2 <  𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1 as gain ripple information is 
there in the noise for this case. The OSNR then in this case is given by; 

𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂𝑅𝑅𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒(𝜆𝜆) = 𝐺𝐺𝑂𝑂 (λ)
𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴+ 𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁_𝑟𝑟𝑁𝑁𝑝𝑝𝑝𝑝𝑓𝑓𝑁𝑁(λ) + 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2 =  𝐺𝐺𝑂𝑂 (λ)

𝐺𝐺𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁𝑟𝑟𝑁𝑁𝑝𝑝𝑝𝑝𝑓𝑓𝑁𝑁𝑝𝑝(𝜆𝜆) 
+

𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2               
                   (12) 
where 𝐺𝐺𝑂𝑂 (λ) is the signal PSD at the end of link and 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒𝑟𝑟𝑁𝑁𝑝𝑝𝑝𝑝𝑓𝑓𝑁𝑁𝑝𝑝(𝜆𝜆)is the total noise PSD ac-
counting for both ASE and NLI. The reason for using “ripple” in the notation is because each span 
amplifiers are assigned gain ripple profiles. “design margin2” are the additional margins added 
in the QoT tool to compensate for other uncertainties such as polarization dependent losses 
etc., but not (almost zero) EFDA gain ripple penalty.  

3.3 Migration form Link to Network Model 
On a network, the fiber links can have several intermediate spans and multiple in-line amplifiers 
as shown in Fig. 3.4(b). It represents an example network model with 4 nodes and a connection 
established between 1 to 4 through nodes 2 and 3. As a connection may have many intermediate 
ROADM nodes, it is therefore important to migrate our understanding of gain ripple based over-
all noise or extended GN model from static link towards a network. From Eq. 9 to Eq. 12, it is 
seen that the NLI contribution on the total noise is significantly dependent upon the ripple pro-
files of the EDFAs. It is therefore important to either tune the launch power based on the span 
EDFA ripple profile to reach some predefined OSNR level or estimating the overall noise based 
on span ripple to calculate accurate QoT parameter and hence to reduce the design margins 
from 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2 to 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1. The latter is one of the problems tackled in this 
work in next section with the help of advance technology, i.e. Machine Leaning. 
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Fig. 3.4: Overall migration from (a) STATIC Link Model to, (b) Example of a Network Model 

In the network model, Dynamic Gain Equalizers (DGE) are considered to flatten the gain ripples 
at every ROADM node, i.e. at the end of each link. Hence, as shown in Fig. 3.4(b), the transmitted 
spectrum at each node including source node is assumed to be perfectly flat with nearly zero 
gain ripple with the help of DGE. Also, all EDFAs used in the network model are operated in AGC 
mode with zero tilt by pre-adjusting their operating points as discussed in introductory section. 
Each span EDFA has assigned a ripple profile denoted by 𝑔𝑔𝑖𝑖(λ) and given by Eq. 8. For an indi-
vidual connection request, the end to end OSNR is calculated by inverse addition of linear SNR 
of each link given utilized by Eq. 12 as: 

1
𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅𝑐𝑐𝑁𝑁𝑛𝑛𝑛𝑛𝑁𝑁𝑐𝑐𝑓𝑓𝑁𝑁𝑁𝑁𝑛𝑛

=  ∑ 1
𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅𝑓𝑓

𝑁𝑁𝑓𝑓
𝐹𝐹=1           (13) 

Keeping Eq. 12 in mind, if 𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂12, 𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂23 and 𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂34 is the individual OSNR of links 12, 23 
and 34, then end to end OSNR for connection 1 is given by: 

1
𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅𝑐𝑐𝑁𝑁𝑛𝑛𝑛𝑛𝑁𝑁𝑐𝑐𝑓𝑓𝑁𝑁𝑁𝑁𝑛𝑛

=  ∑ 1
𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅𝑓𝑓

=  1
𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅12

3
𝐹𝐹=1 + 1

𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅23
+  1

𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅34
         (14) 

In the following sections, we will find the penalty distribution on per link and per connection 
basis over network topology (DT-12) with the help of Eq.1 to Eq. 14 for optimum launch power 
of 0dBm [14][17]. 
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4 Proposed ML Assisted QoT Margin Reduction Solution  
In this section we study the contribution of the wavelength dependent EDFA gain ripple on the 
QoT by taking OSNR as the quality parameter. First, we provide the basic idea about the penalty 
distribution due to EDFA gain ripple on a static link. Then it is addressed the penalty distribution 
on the targeted DT-12 node topology by assigning different gain ripple profile to span EDFAs. At 
the end, the overall flowchart and architecture of the proposed ML assisted model to estimate 
this ripple generated penalty for unestablished connection request is provided. By doing so, re-
duction in the design margin when setting up a new connection request is accomplished with 
the proposed ML tool. 

4.1 Ripple based Penalty Distribution 
Typically, span EDFAs are operated in Automatic Gain Controlled (AGC) mode with near to zero 
tilt (first order/ linear correction) to get a flat gain in the C-band as shown in Fig. 3.3 [5][6]. 
However, although the gain tilt profile is maintained at zero still there are gain fluctuations/rip-
ples within the gain bandwidth of EDFAs. To understand the trends of gain ripple profiles, we 
performed experiments on EDFAs to capture the gain fluctuations in the optical spectrum band 
of ~1530 – 1563nm (40 channels, 100GHz apart). All EDFAs used in experiments were operated 
in AGC mode with zero tilt by pre-adjusting their operating points (inset of Fig. 4.1 shows EFDA 
gain ripple characterization with 40 channels). Based on collected experimental data, we created 
realistic sets of individual spans EDFA gain profiles. We assign these ripples profiles to span ED-
FAs and we emulated a static link set up in VPI Transmission Maker version 9.9 as shown in Fig. 
4.1 [19]. 

 
Fig. 4.1: VPI Tx. Maker set up for static link having ripple profiles at each span EDFA with peak 

to peak gain fluctuation, 𝒈𝒈𝒊𝒊,𝑹𝑹(𝛌𝛌) = ±0.5dB 

 

We found ~1dB (see Fig. 4.2(a)) of fluctuation with increasing number of spans. These fluctua-
tions are plotted for the channel no. 20,  λ20  having ripple value, 𝑔𝑔𝑖𝑖,𝑅𝑅(λ20) of ±0.5dB. We then 
extended these static link simulation experiments in entire C-band to capture the effect of gain 
ripples on OSNR. Fig. 4.2(b) represents the relative OSNR variation distribution over 40 channels 
in C-band with respect to flat EDFA profiles. We observe that with the cascade of spans (80km 
length used in simulations), the OSNR variation increases (~1dB in C-band as also shown in Fig. 
4.3(a)). The trend in Fig. 4.2(b) indicates less fluctuation on spectrum band edge channels. This 
is because the ripple profile used contains more rapid fluctuations in the center, keeping 𝑔𝑔𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 
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constant. The shape of the ripple can vary over longer time (aging), leading to higher peak to 
peak variations, but this is slowly time varying. So, in short and medium term there is clear trend 
which makes modelling of these variations possible. These variations impact the accuracy of the 
QoT estimator within a margin range as described in Fig. 2 and Fig. 7 of [20].  

 
Fig. 4.2: (a) OSNR fluctuation of ~1dB observed due to the EDFA gain ripple after 5 spans, (b) 

EDFA gain ripple effect on OSNR (dB) over the C-band 

4.2 Methodology & Proposed Solution  
We consider a Flexi-grid EON with ROADMs connected through uncompensated fiber links. Each 
link consists of multiple fiber spans that terminate at an EDFA to compensate the span loss. We 
assumed that span EDFAs are operated in AGC mode with zero tilt having gain ripple profiles. 
DGE are also considered to flatten the gain ripples at every ROADM node. 

If we use a PLM, such as the GN model described in section 3, the typical assumption is a flat 
EDFA gain [14] requiring a high design margins as given by Eq. 7. 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑒𝑒𝐹𝐹𝑎𝑎𝐹𝐹_𝑝𝑝  in Eq. 7 corre-
sponds to the “total noise” of the path estimated by the PLM having no EDFA gain ripple infor-
mation. We call it as, “ripple unaware PLM”. The penalty due to gain ripple fluctuations is within 
the design margin1 (which is flat and equal to the worst case). In this case, we had to model all 
EDFAs in the network in a calibration face, which would be time consuming and would need to 
be repeated, when the ripple function changes (aging). In this work, we use the well accepted 
GN model as PLM. We extend the ripple unaware PLM model to capture the ripple penalties to 
ultimately reduce the required margin for new connections. We call it as “ripple aware PLM”. 
We considered accumulated ripple penalties at link ends which are then added over the path. 
Our extended ripple aware PLM estimates OSNR by Eq. 10. 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒_𝑝𝑝 (𝜆𝜆)  in Eq. 12 is the 
sum of 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑒𝑒𝐹𝐹𝑎𝑎𝐹𝐹_𝑝𝑝  and 𝐺𝐺𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒_𝑝𝑝 (𝜆𝜆) and is not flat but models the wavelength (λ) dependent 
ripple noise leading to lower margin (design meagin2 < design meagin1). To improve in this way, 
the accuracy of QoT estimation, we use monitoring information from Optical Performance Mon-
itors (OPMs) assumed to be installed at the end of each link [21] and at the end of connections. 
Such information is used to fit per link noise ripple penalty functions, which in turn are used to 
calculate the end-to-end ripple penalties, 𝐺𝐺𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒_𝑝𝑝 (𝜆𝜆). 

We assume an optical network with established connections and their attributes (also referred 
as state of network at a given time) denoted by P. We assume a ripple unaware PLM model as 
represented in Eq. 2, which calculates the noise of the established connections end-to-end as 
Gnoise_flat_p(P), and the related per link noise as Gnoise_flat_l(P). Note that P contains attributes for a 
connection such as, the traversed links, central wavelength etc. We also assume that we monitor 
the OSNR of the established connections and thus their noise at the path level Yp(P) and at the 
link level Yl (P) and store it in QoT tool database. This data serves as the ground truth, it defines 
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the true 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒_𝑝𝑝(𝜆𝜆), so with zero margin. The flowchart representing the integration be-
tween collected monitoring information and the ML assisted penalty estimation function is de-
picted in Fig. 4.3(a).  

We denote the difference of Y and Gnoise_flat as i) El (P)=Yl (P)- Gnoise_flat_l (P) which is a vector with 
the ripple penalties at the end of each link, accumulated over the links, spans and ii) Ep(P)=Yp(P)- 
Gnoise_flat_p(P) which is a vector with the ripple penalties at connections’ end, accumulated over 
all used links. We let E be the concatenation of both penalties vector El and Ep. From correspond-
ing connections attributes, P, we extract per link and per path features matrices. Additionally, a 
bias term (per link) is also considered to account the monitoring error and for non-zero equalized 
ripple. The per link and per path features are merged into a single features matrix, X=f (P). Our 
goal is to identify the function 𝐺𝐺𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒_𝑝𝑝 =ʘ(X)≈E that maps well the features matrix X to the 
penalty E generated due to the gain ripple. We rely on ML for training and fitting of X on E and 
finding the function ʘ. Assuming a new connection request l ∉ P, we will use the ripple unaware 
PLM to obtain the total flat noise 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑒𝑒𝐹𝐹𝑎𝑎𝐹𝐹_𝑝𝑝 . Then we train our model and obtain ʘ and use 
that to find the ripple noise penalty on the new connection 𝐺𝐺𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝐹𝐹𝑒𝑒_𝑝𝑝(𝑙𝑙) =ʘ(f(l)), and estimate 
the total noise with ripple 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑒𝑒𝐹𝐹𝑎𝑎𝐹𝐹_𝑝𝑝 +ʘ(f(l)). The estimation error will be identified once we 
establish the connection, monitor its values Yp(l) and compare it to that. 

 
Fig. 4.3: (a) Overall Flowchart and architecture, (b) ML-based penalty estimator (i.e., 

train/test/estimate) 

4.3 Result & Discussion 
The DT topology formed by 12 nodes and 40 bidirectional links whose lengths range from 48 to 
458 km (see Fig 4.4(a)) is considered for conducting the tests. 4 traffic loads of [100, 200, 300, 
400] connections are used where selected source-destination node pairs have fixed symbol rate 
of 32GBauds requiring 3 spectrum slots (i.e., 3*12.5GHz = 37.5 GHz). We experimentally cap-
tured some EDFA gain ripple profiles in laboratory. To emulate all span EFFAs with individual 
ripple profiles, we randomly applied time shifting and amplitude scaling on them to obtain a vast 
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set of gain ripple for each span amplifier as, Gi(λ) . A set of connections are assumed to be es-
tablished (according to the load) and monitored. Monitoring in the simulations is performed 
with a ripple aware PLM (extended GN) model, which gives Y(P). A stable network state is con-
sidered with a specific set of established connections. Such a set of connections is divided into 
two sets, 90% / 10%, the training and testing datasets, respectively. The training set is assumed 
to be the established connections P and the testing set the connections to be established. We 
use the ripple unaware PLM (GN) model to obtain Q(P) depending on the attributes P of the 
established connections. 

 
Fig. 4.4: (a) DT 12 network topology, (b) per link & per path penalty distribution 

By subtracting Q and Y, we obtain the penalty vector E (ripple noise-based penalty estimator 
block in Fig. 3b). The E vector distributions are depicted in Fig. 4.4(b) for 100 connections, which 
clearly shows the error values of ~1dB. The penalties are distributed in positive and negative 
sides depending upon the ripple values. Positive/negative penalties result in upper/lower bound 
for design margins and we call them as, “high/low margin”. We evaluated several ML assisted 
regression techniques to fit ʘ on E, such as linear fitting, quadratic, polynomial fitting, support 
vector machine (SVM) etc. In the presented results we used polynomial regressions of degree 4 
that achieved maximum Mean Squared Error (MSE) of 4.5E-2 on predicted OSNR with load of 
100 connections as shown in Fig. 4.5(a). With increase in load from 100 to 400, max MSE con-
verge to a value of ~4E-3. Results presented here are averaged over 200 iterations at each load.  

 
Fig. 4. 5: Effect of load variation on, (a) OSNR (dB) MSE, (b) Max. overestimation error 

From the above set of simulations, the maximum used peak to peak ripple intensity among all 
span EDFAs is about ±0.5dB, which results in a reference margin (𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1) of 1.02dB 
at a load of 400 connections. Fig. 4.5(b) shows the maximum overestimation error on OSNR 
estimation, relative to Fig. 5a. This overestimation is the reduced estimated high and low margin 
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(𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2). For high margin, it is found to be 0.08dB, yielding a ~0.92dB margin reduc-
tion with 400 connections. For low margin, this reduction value is ~0.75dB as the distribution of 
penalties is less for low margin side. 

We also varied the gain ripple intensity (we divided the gain ripple profiles by a factor of 1 to 4, 
resulting in peak-to-peak fluctuations of ±0.5dB to ±0.125dB) and estimated the high and low 
margins at a fixed load of 400 connections. We observe in Fig. 6, a reduction of >90% on both  

 
Fig. 4.6: New margin for different intensities of peak to peak gain ripple among all EDFAs with 

reference as ±0.5dB 

high and low margin for peak to peak intensity fluctuations of ±0.5dB. For low values of peak 
to peak ripple of ±0.125dB, high and low margin reduction varies from 60% to 70% respec-
tively. 

4.4 Further extensions and applications for the QoT tool 
In the following, it is presented extensions to the proposed QoT tool, highlighting some prelim-
inary results. 

4.4.1 Filter Cascading Uncertainties Estimation 
In the above model, the EDFA ripple is the sole reason for the deviation of the QoT estimation 
from its true value. We thus leveraged a ML based solution that used monitoring information to 
estimate the contributed noise penalty. We can view this as an uncertainty in the input param-
eters of QoT estimation tool, the QoT tool assumes a flat EDFA profile. As discussed, such uncer-
tainties are covered with a portion of the design margin. Another source of uncertainty, which 
we tackle in this subsection is related to the ROADM nodes penalties.  

ROADMs are the key switching elements of core and metro deployed optical networks [22]. The 
properties of dynamic reconfigurability and channel add/drop in the optical domain make them 
suitable candidates for the realization of meshed optical networks [8]. Several implementations 
of ROADM are possible using optical devices including MUX/DMUX, optical splitters/combiners, 
wavelength blockers and Wavelength Selective Switches (WSSs). The use of WSS provides the 
advantages of colourless add/drop ports and simpler higher degree design which make them 
the industry choice for the current generation ROADMs [23] [24]. Fig. 4.7(a) shows a “switch and 
select” ROADM node architecture using WSS for channel add/drop and EDFAs (pre and booster) 
to recover fiber and filtering losses [9]. 
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Generally, a signal that traverses a ROADM node encounters some OSNR penalty due to the 
filters or WSS inside the ROADM nodes. Over long paths, where the signal traverses multiple 
links the filters are cascade, resulting in a nonlinear penalty with respect to the number of nodes. 
An example of this effect is shown in Fig. 4.7(b) for 16-QAM as modulation format operating at 
28Gbaud with 37.5GHz frequency spacing [9], where it is clearly shown that the penalty in-
creases exponentially with the number of nodes. This is a simplified model. Since the WSSs inside 
the ROADM nodes have different characteristics, the penalty due to these WSS and their cas-
cading leads to some uncertainties. Removing these uncertainties allows reducing the margin 
from the QoT tool. Thus, a dedicated analysis on this uncertainty and its estimation via ML are 
worth to be explored. 

 

 
Fig. 4.7: (a) A simple switch and select ROADM node architecture, (b) OSNR penalty in dB due 

to tight optical filtering for 16-QAM 

Let us consider a connection, p that traverses 3 links and ROADM node with switch & select 
architecture as shown in Fig. 4.7(a) For the link1, we assume that the filter inside the nodes are 
perfectly ideal and possess some penalty according to Fig 4.7(b) depending upon the no. of 
nodes traversed. Filtering penalty due to cascaded nodes in this case has no uncertainty and 
have integer values as shown in Fig. 4.7(b). Based on this, the OSNR for this case, 𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂𝑖𝑖𝑛𝑛𝐹𝐹_𝑝𝑝  by 
standard QoT tool is given by 

𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂𝑖𝑖𝑛𝑛𝐹𝐹_𝑝𝑝 =  𝐺𝐺𝑂𝑂(λ)
𝐺𝐺𝑛𝑛𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁_𝑓𝑓𝑁𝑁𝑓𝑓𝑓𝑓_𝑝𝑝

              (15) 

 
In this work, monitoring port are assumed to be available at the output of each link just after 
the last fiber span repeater or preamplifier as shown in Fig. 4.8(a).   As discussed in previous 
chapter in case of heterogeneous nodes, multivendor network, different 3-dB Bandwidth of fil-
ter inside nodes etc. leads to some sort of uncertainties and hence the OSNR penalty due the 
traversed nodes for a light path can take non-integer values from the plot shown in Fig. 4.7(b). 
Even though, the nodes are equipped with DGEs and monitoring is available at link ends, still per 
link monitoring port captures cumulative/cascading filtering effect at monitoring port. For ease 
of understanding, we call them as per subpath monitoring and is well indicated for understand-
ing in Fig 4.8(b). This filter cascading uncertainties will surely affect the estimation accuracy of 
the QoT tool. Keeping this scenario in mind, we monitor the actual per subpath OSNR for the 
established connections, having random uncertainty factor, Δ in dB (within a range as shown in 
Fig. 4.8(a)) in the noise penalty (output power is constant with the help of pre and booster EDFA 
inside nodes) is given by 
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𝑂𝑂𝑂𝑂𝑁𝑁𝑂𝑂𝑢𝑢𝑛𝑛𝑐𝑐𝑒𝑒𝑟𝑟𝐹𝐹_𝑝𝑝 =  𝐺𝐺𝑂𝑂(λ)
𝑌𝑌𝑛𝑛𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁_𝑢𝑢𝑛𝑛𝑐𝑐𝑁𝑁𝑟𝑟𝑓𝑓_𝑝𝑝

             (16) 

After going through some simple mathematical operations on Eq. 15 and Eq. 16, the noise gen-
erated at the node due to filter cascading effect is given by Eq. 17as 

𝑌𝑌𝑛𝑛𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑢𝑢𝑛𝑛𝑐𝑐𝑒𝑒𝑟𝑟𝐹𝐹_𝑝𝑝 =  𝐺𝐺𝑂𝑂(λ)𝐹𝐹𝑛𝑛𝑁𝑁𝑁𝑁𝑠𝑠𝑁𝑁_𝑁𝑁𝑛𝑛𝑓𝑓_𝑝𝑝 
𝐺𝐺𝑂𝑂(λ)− 𝐺𝐺𝑂𝑂(λ)(𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅𝑁𝑁𝑛𝑛𝑓𝑓𝑝𝑝− 𝑂𝑂𝐴𝐴𝑁𝑁𝑅𝑅𝑢𝑢𝑛𝑛𝑐𝑐𝑁𝑁𝑟𝑟𝑓𝑓_𝑝𝑝)

           (17) 

 

 
Fig. 4.8: sample connection having filtering uncertainties indicating per (a) link (b) subpath 

monitoring ports  

The difference between this 𝑌𝑌𝑛𝑛𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑢𝑢𝑛𝑛𝑐𝑐𝑒𝑒𝑟𝑟𝐹𝐹_𝑝𝑝 and 𝑁𝑁𝑛𝑛𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑖𝑖𝑛𝑛𝐹𝐹_𝑝𝑝 per subpath for a connection gives 
the penalty in overall accumulated noise due to filtering uncertainty.  Properly trained ML model 
on this monitored data (noise difference) has the potential to estimate these penalties accu-
rately for new connection requests leading to more accurate QoT estimation as discussed in next 
section.  

4.4.2 Methodology & Proposed Solution 
Keeping the same notation as above, we assume an optical network with established connec-
tions and their attributes (also referred to as network state) which is denoted by P. From Fig 
4.7(b), for connection, P, we define OSNR filtering penalty, 𝑁𝑁𝑖𝑖𝑙𝑙𝑤𝑤𝑝𝑝 as a function of no. of cascaded 
WSS or ROADM nodes traversed within end to end established connection and is given as 

𝑁𝑁𝑖𝑖𝑙𝑙𝑤𝑤𝑝𝑝 =  𝑚𝑚 exp (−𝑏𝑏 ∗ 𝑛𝑛𝑛𝑛. 𝑛𝑛𝑓𝑓 𝑂𝑂𝑂𝑂𝑅𝑅𝑅𝑅𝑅𝑅 𝑛𝑛𝑛𝑛𝑑𝑑𝑒𝑒𝑑𝑑)          (18) 

where a and b are the constants and depends specifically upon modulation format and wave-
length grid spacing  

We assume a filtering uncertainty unaware PLM model that has perfect integer penalty values 
as discussed in last section. Such a model calculates the noise of the established connections as 
Gnoise_filt_p(P), and the related per subpath accumulated noise with filter cascading effect as 
FGnoise_ filt_s(P) as given in Eq. 15. Note that P here contains only two attributes for a connection 
i.e., the link IDs traversed and modulation format to establish the connection. We also assume 
that monitored OSNR of the established connections with their noise at the path level Ynoise_un-

cert_p(P) and at the subpath level as Ynoise_uncert_s(P) are stored in QoT tool database. This data 
serves as the ground truth, it defines the true 𝑁𝑁𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑒𝑒𝑖𝑖𝐹𝐹𝐹𝐹_𝑝𝑝, so with zero margin.  

We denote the difference of Y and Gnoise_filt as i) Efilt_s (P)= Ynoise_uncert_s (P)- FGnoise_int_s (P) which is a 
vector with the difference in filtering penalties at the end of each subpath, accumulated over 
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the previous nodes and ii) Efilt_p(P)= Ynoise_uncert_p (P)- Gnoise_int_p(P) which is a vector with the differ-
ence infiltering penalties at connection’s end, accumulated over all used subpaths. We let Efilt be 
the concatenation of both penalty vectors Efilt_s and Efilt_p. From corresponding connections at-
tributes, P, we extract per subpath and end to endpathpath features matrices. Additionally, a 
bias term (per subpath) is also considered to account the monitoring error. The per subpath and 
per path features are merged into a single features matrix, Xfilt =f (P). Our goal is to identify the 
function 𝑌𝑌𝑛𝑛𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑢𝑢𝑛𝑛𝑐𝑐𝑒𝑒𝑟𝑟𝐹𝐹 =Ʊ(Xfilt)≈ Efilt that maps well the features matrix Xfilt to the penalty Efilt gen-
erated due to the uncertainties in the filter cascading. We rely on ML for training and fitting of 
Xfilt on Efilt and finding the function Ʊ. Assuming a new connection request l ∉ P, we will use the 
filtering uncertainty unaware PLM to obtain the total noise difference, Ynoise_uncert_p. Then we train 
our model and obtain Ʊ  and use that to find the filtering uncertainty penalty difference on the 
new connection 𝐺𝐺𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠𝑒𝑒_𝑢𝑢𝑛𝑛𝑐𝑐𝑒𝑒𝑟𝑟𝐹𝐹_𝑝𝑝(𝑙𝑙) = Ʊ (f(s)), and estimate the total noise with filtering having 
uncertainty effect as Gnoise_filt_p + Ʊ (f(s)).  The estimation error will be identified once we establish 
the connection, monitor its values Ynoise_p(s) and compare it to that. 

4.4.3 Preliminary Results 
Again, the DT topology with 12 nodes and 40 bidirectional links is considered. A set of estab-
lished connections (according to the load) with their monitored parameters are provided. As 
discussed acove, monitoring on subpath basis is performed with a filtering uncertainty aware 
PLM model, which give us Y(P). A stable network state having a specific set of established con-
nections is given, where the objective is to set up a pool of new connections. To do so we divide 
connections in two sets, 90% / 10%, the training and testing datasets, respectively. The training 
set is assumed to be the established connections P and the testing set the connections to be 
established. We use the filtering uncertainty unaware PLM model to obtain G(P) depending on 
the attributes P of the established connections. By subtracting F and Y, we obtain the penalty 
vector Efilt (ROADM noise-based penalty estimator block in Fig. 4.8(b)). We evaluated several ML 
assisted regression techniques to fit Ʊon Efilt, such as linear fitting, quadratic, polynomial fitting, 
SVM etc. In the presented results we used linear fitting that achieved maximum MSE of 5.1E-3 
on predicted OSNR with load of 100 connections as shown in Fig. 4.9(a). 

 
Fig. 4.9: Effect of load variation on, (a) OSNR (dB) MSE, (b) Max. overestimation error 

With increase in load from 100 to 400, max MSE converge to a value of ~1E-3. Results presented 
here are averaged over 200 iterations at each load. 
For the above set of simulations, the maximum no. of ROADM nodes traversed for the connec-
tion are 4, leading to 10 WSS or filters, which results in a reference margin (𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛1) 
of ~0.8dB at a load of 400 connections. Fig. 4.9(b) shows the maximum overestimation error on 
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OSNR estimation, relative to Fig. 4.9(a). This overestimation is the reduced estimated high mar-
gin (𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑔𝑔𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑖𝑖𝑛𝑛2) and it is found to be 0.09dB, yielding a ~0.69dB margin reduction with 
400 connections. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

EU-H2020 MSCA-ITN-2017 
 

 

25-06-2019             ONFIRE Deliverable 2.2                                     Page [24] of [27] 

5 Conclusions & Future Plans 
In this document, we summarized the activities and achievements conducted so far by ONFIRE 
ESR2 within WP2. The research focus has been concentrated on exploring the adoption and ap-
plication of ML methods aiming at enhancing the QoT tool estimation accuracy and lowering the 
related margins. In this context, we firstly addressed the problem of modelling the noise penalty 
caused by the EDFAs gain ripple effect. We leveraged a ML regression technique that makes use 
of monitored data from established connections to enhance the accuracy of the QoT estimation 
when serving a new connection. Our results showed that we can lower by >90% (0.92dB) the 
related margin due to EDFA gain ripple. We provided a detailed description of the proposed 
approach and the obtained results. As an outcome of this study, a paper was submitted and 
accepted as a top-scored paper in ECOC 2019 [25]. 

In the same direction, we presented a second application which addresses uncertainties in mod-
elling the WSS cascading effect, using ML. Similarly, this yields a more accurate QoT estimation, 
which in turn lowers the related margin. Our simulations showed margin savings of ~0.69dB.  

With the previous use cases/applications (i.e. EDFA gain ripple and filter cascading effects) in 
mind, we devised the next research steps. We plan to merge both aspects and models in a single 
model (PLM), which would act as the ground truth. In other words, the purpose is to have a 
reference model that considers simultaneously both effects. Next, we are planning to generate 
synthetic data from the created PLM and implement a single ML model accounting for both 
uncertainties collectively.  
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6 Review & Feedback from Advisory Committee 
During the 1st ONFIRE symposium held at CTTC, Castelldefels on 29th January 2019, some com-
ments were pointed out by the advisory committee, AC. Along with each mentioned comment, 
a brief clarification is provided below:  

I. It should be better explained why the extension is needed to the packet layer. Does 
this not involve too much effort for the project? 
 

As already discussed and agreed with AC, the research work with respect to the packet 
layer will be carried out by ESR2 in future. 
 

II. The link between the quality of transmission machine learning tool and the reconfigu-
ration of networks supported by SDN is missing. 
 

The research work done so far in this report is more focused on the improvement of the 
estimation accuracy which leads to the design margin reduction of the existing QoT tool. 
In real systems, QoT estimation tool interact with routing and spectrum assignment 
(RSA), which can be optimised further, if the QoT estimation is more accurate with some 
margin savings. 
 

 

Fig. 6. 1: QoT estimation tool interaction with different algorithms 
 

For new connection request or dynamic reconfiguration request of an existing connec-
tion within a network, the SDN controller is the main interacting unit to accept/block 
these requests.  From Fig. 6.1, the Qtool provides the signal quality estimation for these 
requests and this overall system is interacting with SDN controller through proper inter-
faces. Since, with the proposed Qtool in this work, the noise (hence OSNR) is estimated 
more accurately than the existing Qtools. Hence with real time interaction with the SDN 
controller, better path, more robust modulation format, low blocking probability with 
the RSA algorithms is possible, since our Qtool can predict the quality with least uncer-
tainties due to EDFA gain ripple and filter cascading effect.  This is just a brief introduc-
tion of interaction/link between proposed ML assisted QoT tool and reconfiguration of 
networks supported by SDN. In any case, we will accommodate/clarify all the com-
ments/doubts during the upcoming meetings and discussion with the AC. 
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